Technologies for the Removal of Organic Micropollutants in Drinking Water Treatment

Waterworkshop
Chemistry Department of the Faculty of Sciences
University of Novi Sad
10.09.2009

Ralph Hobby, Stefan Panglisch, Rolf Gimbel

Institute for Energy and Environmental Process Engineering / Water Technology

IWW Rhenish-Westphalian Institute for Water Research
Where we are?
Institute for Energy and Environmental Process Engineering
Water Technology

Chair: Professor Dr.-Ing. Rolf Gimbel

Research areas
- Membrane Technology
 Dr.-Ing. Stefan Panglisch / Dr.-Ing. Ralph Hobby
 M. Sc. Mathis Keller
 M. Sc. Grit Hoffmann
 M. Sc. Anik Deutmarg
- Fixed Bed Processes, Sorption Processes
 Dr.-Ing. Ralph Hobby
 Dipl.-Ing. Carsten Bäcker
 M. Sc. Grit Hoffmann
- Artificial Neural Networks (ANN)
 Dipl.-Ing. Silke Strugholtz
 M. Sc. Mathis Keller
- Computational Fluid Dynamics (CFD)
 M. Sc. Wei Ding
- Bioprocess Technology
 N. N.
- Xenobiotics, Nanoparticles in the Environment
 Dr.-Ing. Ralph Hobby
 Prof. Dr. Ivana Ivancev-Tumbas (Universität Novi Sad)

Cooperation with IWW in the Fields of
- Water Technology (Drinking Water, Industrial Water)
- Process Analysis and Analysis of Micropollutants
- Applied Microbiology (Hygiene, Biofouling)
Main Topics

- Actual problems and challenges of drinking water treatment

- Some modern conventional processes

- Non-conventional processes
 - Oxidation / AOP
 - Membrane filtration

- Conclusions
World Population Growth Between 1750 and 2050 (Source Data of the UN 1998)
Trouble Spot of the Global Water Use

- Increasing demand on water with an appropriate quality for irrigation and for supply of industry and communities (drinking water)

- Increasing demand on water supply and waste water discharge in conurbations (megacities, megalopolis)

- Increasing pollution of water resources with anthropogenic compounds
 ⇒ xenobiotics, organic micropollutants

- Climatic change
 (especially increasing of extreme dry spells and extreme rain falls)

⇒ The World‘s Water Crisis ⇐
Water Technology as Support for the Solution of the World‘s Water Crisis

- Waste water treatment for sustainable water protection
- Waste water treatment for closing water cycles in industry and trade
- Waste water treatment for waste water reuse (e. g. irrigation)
- Treatment of ground water and surface water to produce clean drinking water
- Water treatment for special use (e. g. process water)
- Desalination of brackish water and sea water
- ...

...
Variety of Substances in Water

Solid Substances
- particles, colloids, e. g.
 - bacteria
 - parasites
 - algae
 - clay particles
 - ...
 - viruses

Dissolved Substances
- organic subst., high-molecular
- organic subst., middle-sized
- organic subst., low-molecular
- inorganic substances:
 - ions, polyvalent
 - ions, monovalent
 - gases

Some actual „groups of interfering substances“:
- too high salt concentration..~ kg / m³
- nutrients..~ g / m³
- micropollutants
 (e. g. EDCs, PPCPs, Pesticides, several metabolites,
 industrial chemical products like MTBE, PFT, EDTA).............. ~ µg till mg / m³
- persistent pathogens... ~ 1 Particle / m³ or 10⁻³ ng / m³

- in the future nanoparticles?
Some Organic Micropollutants...

<table>
<thead>
<tr>
<th>Groups of Substances</th>
<th>Examples</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hormones, EDCs</td>
<td>17α-ethinylestradiol, 17β-estradiol, estrone</td>
</tr>
<tr>
<td>Pharmaceuticals (contrast agents)</td>
<td>Diclofenac, Ibuprofen (both antiphlogistics), Bezafibrate (lipid regulator), Diazepam (tranquilizer), Carbamazepine (anti-epileptic), Iopromide, Iopamidol, Diatrizoic acid</td>
</tr>
<tr>
<td>Personal care products</td>
<td>Tonalide (AHTN), Galaxolide (HHCB) (musk fragrances)</td>
</tr>
<tr>
<td>Disinfectants</td>
<td>Triclosan</td>
</tr>
<tr>
<td>Surfactants</td>
<td>Fluorosurfactants, (Perfluorooctanesulfonic acid (PFOS), Perfluorooctanoic acid (PFOA))</td>
</tr>
<tr>
<td>Flame retardants</td>
<td>Organophosphates</td>
</tr>
<tr>
<td>Gasoline additives</td>
<td>Methyl tertiary butyl ether (MTBE),</td>
</tr>
</tbody>
</table>
Characteristics of “waterworks relevant” and “drinking water relevant” Micropollutants

e. g. some EDCs, PPCPs, Pesticides, several metabolites, industrial chemical products like MTBE, PFT, EDTA

- Low or none biodegradability
- Chemical stability
- High polarity respectively high water solubility
- Low tendency to adsorb

→ Low or no removal efficiency in soil passage

→ Characteristics of micropollutants are very important for the efficiency of treatment steps
 - e. g.
 - water solubility
 - octanol-water partition coefficient (log K_{OW})
Main Topics

- Actual problems and challenges of drinking water treatment
- Some modern conventional processes
- Non-conventional processes
 - Oxidation / AOP
 - Membrane filtration
- Conclusions
Processes for Drinking Water Treatment

- Bank Filtration
- Aeration
- Flocculation
- Sedimentation
- Rapid Filtration
- Adsorption (GAC)
- Oxidation (Ozonation)
- Advanced Oxidation Processes (AOP)
- Nanofiltration, Low Pressure RO
- Adsorption onto PAC / Micro-, Ultrafiltration
Bank Filtration

Infiltration via river or lake

Removal of org. and inorg. compounds by microbiological processes

Oxygen reduction

Denitrification, Reduction of Mn and Fe

Reduction of sulfate, CH₄ formation

Groundwater Flow – Change of Hydrochemical Conditions

Konzentrationserhöhung: Physikalische / geochemische / mikrobielle Mobilisierung oder Produktion

Konzentrationsverminderung: Physikalische / geochemische / mikrobielle Eliminierungsprozesse

Schulte-Ebbert, 2004, modified
Modern Treatment of River Water with Conventional Technologies (Example)

River Ruhr Pre-ozonation Flocculation Main-ozonation DM-Filtration GAC-Filtration

The „Mülheim Process“

⇒ Multibarrier System ⇐
Adsorption on Activated Carbon

- usual for the removal of organic micropollutants
- high removal efficiency for non-polar substances
- log K_{OW} suitable indicator for
 - non-polar substances
 - substances without heterocyclic or aromatic bound nitrogen
 - log $K_{OW} > 3$ (→ removal efficiency 75 – 100 %)
- operation time of GAC filters dependent on sorption behaviour of micropollutants!
GAC Process

Tap water:
\[C_{0,\text{Carbamazepin}} = 0.9 \, \mu g/L, \quad C_{0,\text{Iopromide}} = 1 \, \mu g/L \]

- Carbamazepine in effluent of column 2
- Iopromide in effluent of column 2

GAC filter, effluent column 2:
- GAC type: NORIT GAC 830
- \(h = 1 \, m \) (column 1 and 2)
- \(m_{\text{GAC}} = 1200 \, g \)
- \(v_F = 10 \, m/h \)

Operating time in d

IWW
GAC Process

Tap water:
\[C_{0,\text{Carbamazepin}} = 0.9 \, \text{µg/L}, \quad C_{0,\text{lopromide}} = 1 \, \text{µg/L} \]

- ■ Carbamazepine in effluent of column 2
- ♦ lopromide in effluent of column 2

GAC filter, effluent column 2:
- GAC type: NORIT GAC 830
- \(h = 1 \, \text{m} \) (column 1 and 2)
- \(m_{\text{GAC}} = 1200 \, \text{g} \)
- \(v_F = 10 \, \text{m/h} \)

Specific throughput in m³ water/kg GAC
Breakthrough curves of different pharmaceuticals (incl. contrast agents) in GAC-Filter test

Quelle: Marcus, 2005
Oxidation with Ozone (as O$_3$)

- usually addition of approx. 1-2 mg O$_3$ per mg DOC
- ozone (as O$_3$) reacts selectively with substances which can be easily oxidised.
- the degradation rate for micropollutants depends strongly on the type of substance and ambient conditions (e.g. pH).
Rate Constant and Half Life Period (for 1 mg/L Ozone) for Some Pharmaceuticals Reacting with O₃ und ClO₂ (pH = 7)

Source: Ternes, 2006

Huber et al., 2005, Water Res.
Oxidation with Ozon (radical formation)

- during ozonation formation of highly reactive OH-radicals, which react non-selectively and their rate constants are between 10^7 and 10^9 L/(mol s)
- concentration ratio of OH-radicals and ozone (usually $\sim 10^{-9}$) is too low
- concentration ratio can be increased by Advanced Oxidation Processes (AOP) up to $\sim 10^{-6}$
Main Topics

- Actual problems and challenges of drinking water treatment

- Some modern conventional processes

- Non-conventional processes
 - Oxidation / AOP
 - Membrane filtration

- Conclusions
Removal of Micropollutants by AOP

- Rate constants for the reaction of ozone respectively OH-radicals with pharmaceuticals
 (Huber et al. 2003, Baus et al. 2007)

 - **AOP**
 - $\text{O}_3/\text{H}_2\text{O}_2$ (Peroxon-Process)
 - UV/O_3
 - UV/H_2O_2
 - Fe(II)/H_2O_2 (Fenton-Process)

- Radicals react non-selectively. But especially hydrogen carbonate ions and the natural organic matter act as scavengers

- Removal in % of pharmaceuticals in Lab experiments using ozone and hydrogen peroxide(data from Zwiener und Frimmel, 2000)
Some Critical Aspects Concerning O$_3$-Oxidation or Photolysis

- **Using ozone**
 - possible formation of substances, which may cause more problems due to their toxicity and removal efficiency than the substances in the raw water before the oxidation step (e.g. NDMA)
 - by-product formation (e.g. bromate, less with the Peroxon-Process)

- **Using UV**
 - high energy consumption (more than by the use of NF and RO for TDS < 5,000 mg/L)
Main Topics

- Actual problems and challenges of drinking water treatment
- Some modern conventional processes
- Non-conventional processes
 - Oxidation / AOP
 - Membrane filtration
- Conclusions
Principle of Membrane Filtration Processes

Flow Direction

<table>
<thead>
<tr>
<th>Membrane Process</th>
<th>Flow Direction</th>
<th>Pore Size</th>
<th>Pressure Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reverse Osmosis (RO)</td>
<td></td>
<td>no pores</td>
<td>Δp = 5 - 100 bar</td>
</tr>
<tr>
<td>Nanofiltration (NF)</td>
<td></td>
<td>d_pore ≈ 1 nm</td>
<td>Δp = 3 - 10 bar</td>
</tr>
<tr>
<td>Ultrafiltration (UF)</td>
<td></td>
<td>d_pore ≈ 10-50 nm</td>
<td>Δp = 0.1 - 5 bar</td>
</tr>
<tr>
<td>Microfiltration (MF)</td>
<td></td>
<td>d_pore ≥ 50 nm</td>
<td>Δp = 0.1 - 2 bar</td>
</tr>
</tbody>
</table>

Solid Substances
- particles, colloids, e.g.
 - bacteria
 - parasites
 - algae
 - clay particles
 - viruses

Dissolved Substances
- organic subst., high-molecular
- organic subst., middle-sized
- organic subst. low-molecular
- inorganic substances:
 - ions, polyvalent
 - ions, monovalent
Main Applications

- **RO:** Desalination of seawater and brackish water

- **NF/LPRO:** Removal of hardness, sulfate, colour, NOM (Natural Organic Matter), increasingly org. micropollutants (LPRO=Low Pressure Reverse Osmosis)

- **UF/MF:** Removal of suspended and colloidal substances, esp. microorganisms, in future possibly desinfection

- *(UF/MF in combination with PAC ⇒ Removal of organic micropollutants)*
LPRO/NF-Results with Polyfluorinated Tensides (PFOA)

<table>
<thead>
<tr>
<th></th>
<th>Tag1</th>
<th>Tag3</th>
<th>Tag5</th>
<th>Tag1</th>
<th>Tag4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rückhalt PFOA Versuch 1</td>
<td>99,6</td>
<td>99,7</td>
<td>99,8</td>
<td>99,9</td>
<td>96,1</td>
</tr>
<tr>
<td>Eingangskonzentration 100 µg/l</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rückhalt PFOA Versuch 2</td>
<td>96,9</td>
<td>97,3</td>
<td>99,95</td>
<td>99,96</td>
<td>98,0</td>
</tr>
<tr>
<td>Eingangskonzentration 10 µg/l</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- BW30
- XLE
- NF 90
- NF 270
Possibilities and Limits of LPRO / NF...

- Xenobiotics – also polar, persistent ones – are usually very good removable (e.g. Pesticides, PPCPs, PFT, MTBE, EDTA, different metabolites...)

- But: low retention of very small and uncharged molecules like Trichloroethene, Chloroform, NDMA (also using LPRO)

- Using „real“ NF the retention of substances with molecular weights between approx. 200 und 400 g/mole is strongly dependent on:
 - membrane material and membrane structure
 - substance!!!
 - water matrix

- Permeate is not comparable to the raw water with regard to the chemical composition

- Characteristics with regard to corrosion behaviour of the permeate are usually influenced negatively ⇒ Post Treatment!
Effective pretreatment step for particle removal necessary (no backwashing of spiral wounded modules)

Recovery only approx. 80 % (maximum 90 %) due to avoiding of scaling (clogging of the membrane)

In the concentrate are high concentrations of the retained pollutants (factor 5 – 10) and normally anti-scalants (10 – 50 mg/L)

Total costs (without pre- and post-treatment) are approx. 30-50 Cent/m³

Application may be more economical, if several conventional treatment steps can be replaced
Principle of the PAC / UF combination

UF, flow direction

Solid Substances
- particles, colloids, e.g.
 - PAC particles
 - bacteria
 - parasites
 - algae
 - clay particles
 - viruses

Dissolved Substances
- organic subst., high-molecular
- organic subst., middle-sized
- organic subst., low-molecular
- Inorganic subst.:
 - ions, polyvalent
 - ions, monovalent
Use of PAC with Pressure Driven Membrane Filtration

Cross-Flow-Mode
(e. g. Cristal® process)
high energy consumption

Dead-End-Mode
low energy consumption
Removal of PNP with PAC/UF in Dead-End-Mode

Polym. cap. membrane,
d = 0.8 mm, L = 1.2 m
Membrane surface = 3.6 m²
Flow rate = 360 L/h
Flux = 100 L/(m² h)

PAC (NORIT SA UF) contact time around 1.3 min

PAC/UF Dead-End Mode, continuous PAC dosing (10 mg PAC/L) during UF-filtration cycles just before UF-module.
UF-backwashing every 30 minutes

PNP concentration in permeate, run 1
PNP concentration in permeate, run 2

Mean PNP conc. in permeate
Theor. PNP equilibrium conc.
Polymer Membranes versus Ceramic Membranes

- Today low pressure membrane market for DW production is absolutely dominated by polymeric membranes
 - Strength: quite reasonable price
 - Weakness: relatively low mechanical stability, low tolerance against chemicals

- In manyfold industrial solid-liquid separation processes ceramic membranes are well established
 - Strength: high mechanical stability (also at high temperatures), highly resistant against chemicals, high permeability, intensive backwashing and cleaning processes possible
 - Weakness: relatively high price

- In Japan exist about 40 DWTP with ceramic membranes (the largest one with approx. 1,600 m³/h)
NGK Insulators Ltd. Ceramic MF-Membrane (Material: Al$_2$O$_3$)

Membrane surface area: 25 m2

Feed Channel
\varnothing 2.5 mm

Filtrate collecting channel

Raw water

Filtrate slits

Filtrate
Main Topics

- Actual problems and challenges of drinking water treatment
- Some modern conventional processes
- Non-conventional processes
 - Oxidation / AOP
 - Membrane filtration

Conclusions
Conclusions

- With modern drinking water treatment technologies we can remove nearly all pollutions down to non-relevant concentrations (absolute zero will be impossible!)

 but

- our primary objective should always be to protect our water resources! This will allow us to keep the drinking water as natural as possible

Many thanks for your attention!