

Contemporary methods of solid phase extraction

Ivana Ivanovic

Product Manager Separation Technology

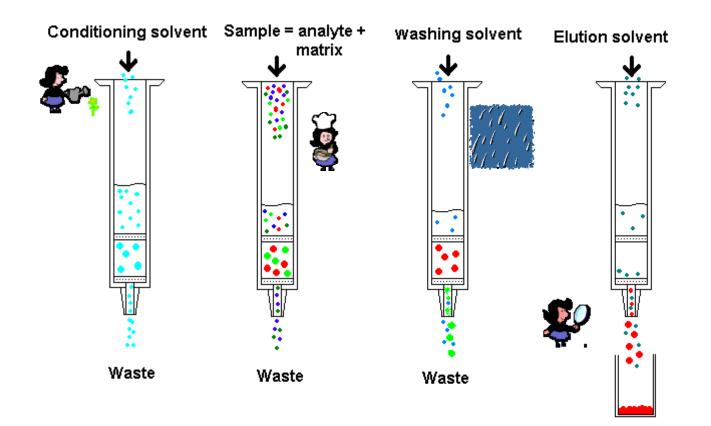
Novi Sad, Serbia, September 9th, 2009

OUTLOOK

- **J.T.Baker Solid-Phase Extraction Products**
- Freon replacement ISO-9377-2 (2000)
- Environmental Testing Application examples

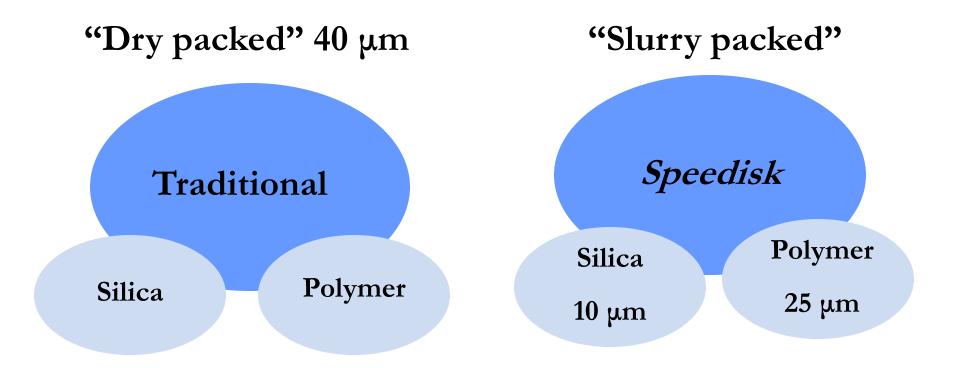
Principles of spe

SPE is an extraction process whereby, an aqueous sample is filtered through a thin bed of sorbent particles, the analytes of interest are removed from the sample matrix, and concentrated onto the sorbent. Once concentrated, the analytes are removed by an eluting solvent.

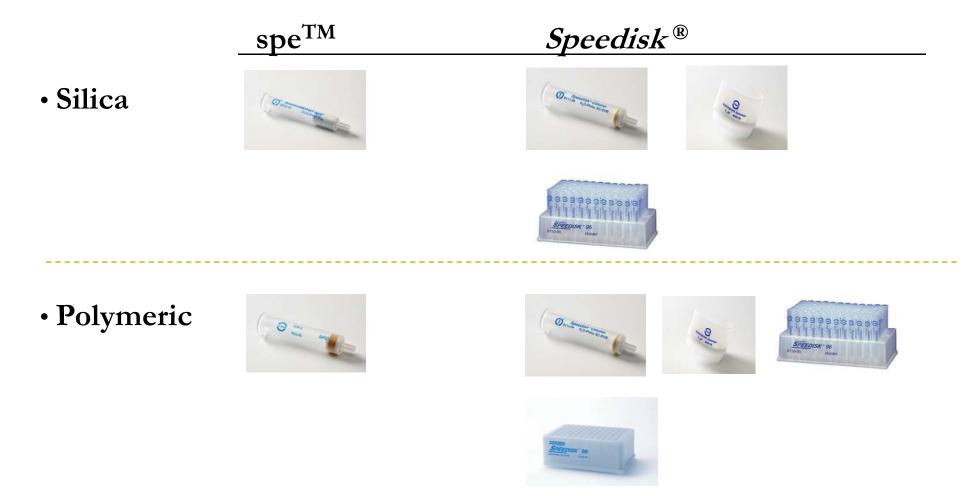

What are the Benefits of SPE?

- ✓ SPE uses less solvent than LLE
- ✓ SPE is faster (at least 5 times)
- ✓ High capacity (2-8 %)
- ✓ Total SPE costs are considerably less than LLE
- ✓ SPE typically provides more accurate data than LLE
- ✓ High selectivity: broad choice of bonded phases and solvents
- \checkmark Automation much easier

The 4 Basic Steps in SPE



Solid-Phase Extraction Flash Presentation

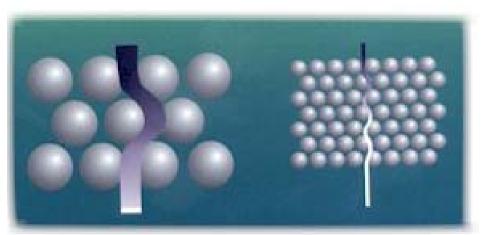


J.T. Baker SPE sorbents portfolio

Sorbents and configurations for BAKERBOND spe

Pre-cleaned housing

BAKERBOND SpeediskTM Products are Protected by U.S. Patent No. 5,595,653



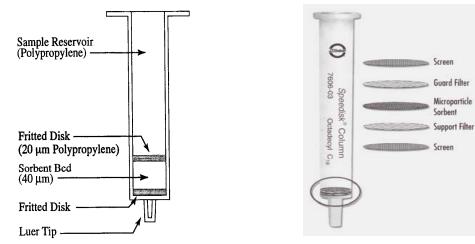
Benefits of Speedisk® configuration

Laminar BAKERBOND Speedisk®

- High flow rate
- High capacity
- Minimum of clogging

40 μm Conventional flow pattern

10 μm Speedisks ®


flow pattern

Mallinckrodt Baker

Conventional spe

VS Speedisk[®]

Sorbent Weight	100 mg (40 μm) / 1 cc	10 mg (10 µm) / 1 cc	
Sample Volume	2.0 ml	1. 0 ml	
Conditioning solvent	2.0 ml (20 sec)	0.5 ml (5 sec)	
Sample addition	2.0 ml (100 sec)	1.0 ml (50 sec)	
Wash solvent	1.5 ml (15 sec)	0.4 ml (5 sec)	
Eluting solvent	2.0 ml (20 sec)	0.3 ml (3 sec)	
Evaporation/reconst.	3 – 10 min	not necessary	

ハイパフォーマンス固相抽出 — 従来のSPEとの比較

Speedisk Column は高流速での処理が可能 1

従来品(SPE Column)では流速を上げるとバンド幅が大きく広がっているが SpeediskColumnにはその影響がほとんど見られない。 (サンプル:メチルオレンジ 1mg/ml)

Speedisk[®]

concept

充填剤量100mg

メチルオレンジを共に5mlづつ添加した。SpeediskColumn はバンドがシャーブな為、サンブル添加時にサンブルをロス する事なく多くのサンプルを保持できる。

充填剤量500mg

3)

充填剤量500mg

充填剤量100mg

Speedisk Column の高い濃縮効果

メチルオレンジを同量づつ添加し、メタノールで100μl刻みにメチルオレン ジの色が落ちるまで溶出させた。

従来品 Speedisk Column 充填剂量100mg 充填剂量100mg

従来品溶出液 SpeediskColumn溶出液

Disk and Column type configuration

Speedisk[®] Disk type

- ✓ <u>Large</u> Volume Samples
- ✓ Environmental Applications

Speedisk[®] Column type

- ✓ <u>Low</u> Volume Samples
- ✓ Biological/Pharmaceutical Applications

- C₁₈, C₁₈ Light Load, C₁₈ Polar Plus
- C_8 , C_8 Polar Plus
- Phenyl
- C₄
- C₂
- Cyano (CN)
- Amino (NH2)
- Diol (COHCOH)
- CBx WP, PEI WP, Butyl WP, HI Propyl WP (biotechnology)
- Silica (SiOH)
- Quaternary Amine (N+)
- Aromatic Sulfonic Acid (C₆H₅-SO₃H)
- Carboxylic Acid (COOH)
- narc-1, narc-2 (for drugs of abuse analysis)

Mallinckrodt Baker

Mallinckrodt Baker

Some typical Speedisk® Application

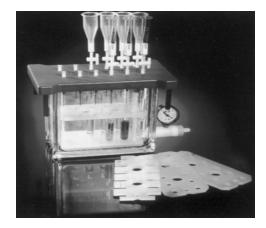
Environmental

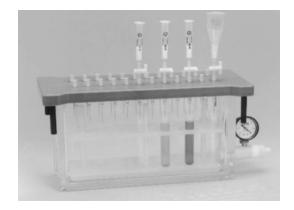
- - PAH 's from water and soil
- - PCB's from oil
- - Explosives in soil
- - Pesticides from water/soil
- - Phenoxy acid herbicides from water

Food/Feed/Beverages

- - Aflatoxine from corn meal
- - Caffeine from di-caffeinated diet cola
- - Vitamin E from juice

Pharmaceutical/Clinical/Biological


- - Benzodiazipines from serum
- - Anabolic Steroids/Urine
- - Aflatoxine from liver



BAKER 12 G PTFE DESIGN

BAKER 12 G REGULAR DESIGN

Accessories....

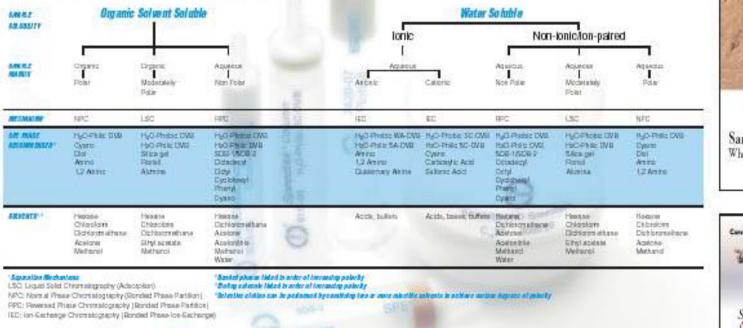
BAKER 24 G REGULAR DESIGN

Speedisk[®] 48 Processor:

•Positive Pressure Processsor for processing 1, 3, 6 ml columns in batches of 1 - 48 samples.

Speedisk[®] 96 Processor:

•Positive Pressure Processor for processing 1 ml rimless columns in a 96 (8 x 12)microplate format


Special designed Speedisk extraction manifolds

Expanded Extraction Station 6-port

Selection Guide for spe sorbents and solvents Organic samples mw < 2000 (in solution).

This Sottent Selection Guide is a systematic guide datasiving surples according to belancy, unitability and solubility in eater or organic salvents. This information is useful in selecting the necessary components of a preliminary extraction method.

* Salvente

SDD: Synene Divingi Benzeee DNR: Divity/ Renzeres HyOPhobic WA DVR: Weak anion exchanger HyOFhobic SC DVR: Sitting callor exchanger PyO/Phile SA DV9 Stong with sectanger HyD Phile SE OVE Story calor ascharger

9262 Helson, ULTRA RESI ANALYZED* 9257 Ebbediore, ULTRA RESI-ANALYZED* 9264 Dichlorstrohame, ULTPA RESI ANALYZED* 9240 Elityl spolate, ULTRA FIELS-ANN.YZECP 3254 Acatone, ULTRA PESI ANALYZEEP* 9251 Aplication, ULTEA SESI-ANALYZEC*

9017 Methanol, ULTRAFESI-ANALYZEP*

-AD-19 Walket ULTER RESE-ANALYZED*

Speedisk Calumn This Sorbent Selection Guide is also available on: www.jtbaker.com/chromatography/SolidPhaseExtraction.asp

Robust Desta	Rabels of Hiles 16 WTTL-shield Real Loader ROUMEL	Ballania & Ballania Ballifina Alago 1181 31 Oktober Mig	in inclusion in the Inclusion in the second	So Sarras Philippe Seguite 200 Dana Philippe Seguite 200 D Res Triang	
1 201 FR HERE 1 Garantes and the set	1 100 10000000 a Salkaradig amal statestic Jacker	1 BE STERLA) 認識医問 · Adapting met Schufflicht See	1 2日 日日日王 ^中 - Joshu Naji - Mathanagi	110

ten nap avan herike er meka e braisk orgit af ywe erne Spenie P - eineme opromisieren er die angesterntener te nast af ywe agnetier sach. Brais fierege er beve nat a migle physical. Court [That of waith you public types

Development of new products applicable to the quantitative determination of the mineral oil index (hydrocarbon index) according to ISO-9377-2 (2000)

Determination techniques for Mineral Oil in Europe

Use of Infrared (IR) since 1951

NEN 6673 (1981), DIN 38409-H18 (1981), NEN 6675 (1989)

Tetrachloromethane > Freon > Tetrachloroethylene

From 1997 Gaschromatographic determination

NEN 5733 (1997), DIN-EN ISO 9377-4 (1999), **ISO 9377-2 (2000)** Petroleum Ether, Iso-Hexane, Pentane, n-Hexane etc.

Mallinckrodt Baker

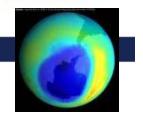
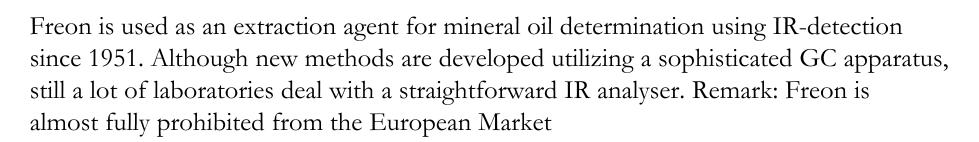


Table 2. Comparison of chlorofluorocarbon replacements to trichlorofluoromethane.

Compound	Intended use	ODP	GWP	Estimated atmospheric lifetime, years
Trichlorofluoromethane	Refrigeration, blowing agent	1	1	144
1,1-Dichloro-1-fluoroethane	Blowing agent, solvent	0.1	0.12	11
(HCFC-141b)				
1,1,1,2-Tetrafluoroethane	Refrigeration	-	0.4	14
(HFC-134a)			0.04	
Pentafluoroethane (HFC-125)	Refrigeration, fire extinguisher	-	0.84	41
1-Chloro-1,2,2,2-tetra-fluoroethane	Blowing agent, refrigeration	0.02	0.1	1.3
(HCFC-124)				
1,1,1-Trifluoro-2,2-dichloroethane (HCFC-123)	Refrigeration, blowing agent	0.02	0.02	1.6

Abbreviations: ODP, ozone depletion potential; GWP, global warming potential.



Mallinckrodt Baker

EXTRACTION SOLVENTS (IR-determination)

FREON

(1,1,2-Trichlorotrifluoroethane)

Tetrachlorethylene

(Perchloroethylene) product code 9360

Tetrachlorethelyne is a largely used alternative for Freon. This solvent also acts as an extraction agent for the determination of the Hydrocarbon oil index, using IR detection. J.T. Baker's Ultra Resi Tetrachloroethylene suits to your existing Freon application.

ISO-9377-2 (2000)

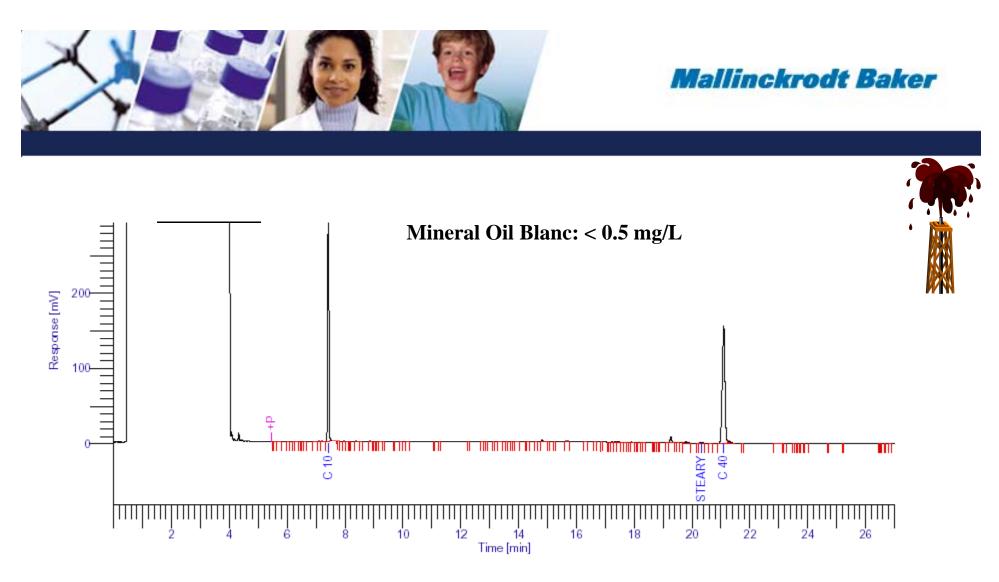
Since October 2000 an alternative method, to replace Freon, has been directed by the EC (ISO-9377-2)

- Single hydrocarbon or a mixture of hydrocarbons, both with a Boiling range between 36-69°C, replaces Freon

- The extraction is followed by cleanup for removal of polar substances (using Activated Florisil[®]) and Gas Chromatographic (GC) separation with on-column injection (including large volume injection (LVI) technique) and Flame Ionization Detection (FID).

Mallinckrodt Baker ISO-9377-2 Hydrocarbon oil index

Sum of concentrations of compounds extractable with a hydrocarbon solvent with boiling point between 36 °C and 69 °C, not adsorbed on Florisil® and which may be chromatographed with retention times between those of n-Decane (C10H22) and n-Tetracontane (C40H82)



Procedure ISO 9377-2 (2000)- Summary

- Water sample (1L) is extracted with 50 ml extracting agent
 - 'Single Hydrocarbon Solvent with boiling range 36 °C 69 °C'
- Water is removed with Sodium sulfate, anhydrous
 - 'N a_2 SO₄ has to dried before use'
- Polar substances are removed by clean-up on Florisil
 - 'Florisil has to be activated by heating to 140 °C for 16 h'
- Preconcentration step with evaporation apparatus
 - 'To enhance the limit of detection'
- Final analysis of hydrocarbon index with on-column GC-FID / Large Volume Injection Technique

Ultra Trace GC Large Volume Injection of Iso-Hexane inclusive C10/C40 internal standards, injectionvolume 100 μ l (by kind permission of Interscience B.V.)

9266 Petroleum Ether

9267 Iso-Hexane

- total peaks between n-decane ($C_{10}H_{22}$) and n-tetracontane ($C_{40}H_{82}$)...max. 0.5 mg/L

7061-00 Florisil, activated

(16 h at 140 °C)

3377-00 Sodium Sulfate, anhydrous

7495-18 SPE Column Ready to use with 2 g Sodium Sulfate / 2 g Florisil

7495-04 SPE Column Ready to use with 0.5 g Sodium Sulfate / 0.5 g Florisil

For use in Large Volume injection techniques 0252 Sand "washed and ignited"

Used as blank sample 0168 Magnesium Sulfate Heptahydrate Agent to avoid formation of emulsions

Adobe Acrobat 7.0 Document

Info Bulletin

Application Examples – Environmental

- Pesticides (Triazines, Organchlorines etc)
- Polychlorinated Biphenyls (PCBs)
- Polycyclic Aromatic Hydrocarbons (PAH's)
- ♦Acrylamide
- Pharmaceuticals
- Endocrine disruptors

SPE Application Notes Examples-Environmental

Extraction and determination of pharmaceutical residues and related polar contaminants in water samples

Clean up procedure with Florisil®/Sodium Sulfate for Hydrocarbon Index determination according to ISO 9377-2.

Multiresidue Analysis Method of Triazines, Organochlorine Pesticides and Polyaromatic Hydrocarbons in Drinking Water (adapted from the method E.P.A. 525.2.)

Extraction of Polycyclic Aromatic Hydrocarbons in water

Extraction of steroid hormones, hormone conjugates and macrolide antibiotics in influents and effluents of sewage treatment plants

Law

Adobe Acrobat

7.0 Document

SPE Application Lists

SPE and **Speedisk Applications**

Deventer Applications

Evaluation Purpose Only

Zanob Applications

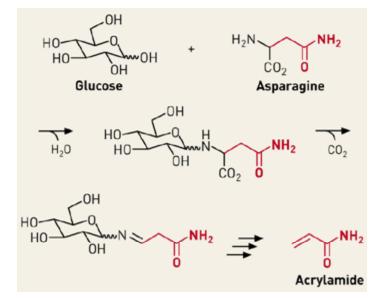
QUESTIONS?

THANK YOU FOR YOUR ATTENTION!

Solid-phase extraction

BAKERBONDTM

Activated Carbon


BAKERBONDTM ACTIVATED CARBON PRODUCTS

- A. BAKERBONDTM Activated Carbon
- B. specially developed for the extraction of Acrylamide from surface and drinking water
- C. German standard method (DIN 38 413 P xx)* for the determination of acrylamide in water (e.g. drinking water, surface water) by high performance liquid chromatography with mass spectometric detection (HPLC MS/MS)

Mallinckrodt Baker

Acrylamide

- One of the contaminants in 1st
 Priority List of FDA, WHO and
 EPA
- Formed during the cooking of carbohydrate rich food

Mallinckrodt Baker

Solid-phase extraction

- Fried, baked, or roasted food
- Present in breads and cereals

 Preparation of polyacrylamide or its copolymers
 Polyacrylamide used in purification of drinking, waste and process water

Solid-phase extraction

PHYSICAL PROPERTIES OF BAKERBONDTM ACTIVATED CARBON

BAKERBOND TM Carbon	
Appearance	Black Spheres
Particle Size	
(by Laser Scanning in Water Suspension)	
d ₁₀ [µm]	210 - 240
d_{50} [µm]	300 - 330
d_{10} [µm]	405 - 435
Specific Surface Area	
(by Nitrogen Adsorption (BET-method), m ² /g)	Typical 1300 !!!
Porosity	
Microporosity (cm ³ /g)	typical 0.75
Mesoporosity (cm ³ /g)	typical 0.50
Loss on drying (%)	1.40 – 1.60
Bulk density (g/ml)	typical 0.40

BAKERBONDTM Activated Carbon

<u>Sorbent</u>

PN 7532-00 – 100 gr of Activated Carbon

SPE columns

PN 7575-06 – 6 ml PP / 500 mg

PN 7575-07 - 6ml PP / 1000 mg

Acrylamide Application

Acidic Herbicides Application

Mallinckrodt Baker

Sales Tools

Organophosphorous Pesticides

Application

BAKERBONDTM Carbon-Amino Double Phase Column

Clean-up of Pesticides and Insecticides from Food and Feed

Sales Tool

Application

Pesticide residue analysis in agricultural products Organophosphates, Carbamates, Pyrethroids

Mallinckrodt Baker

Solid-phase extraction

BAKERBONDTM SDB-1

Extraction of Chlorphenoxyacid Herbicides from Water Extraction of Phenols from Water Extraction of Carbamates from Water Extraction of Explosives and Metabolites from Water Extraction of Organophosphorus Pesticides from Water Extraction of Pesticides from Water using Extraction of Pesticides from Soil and Urine

Sales Tool

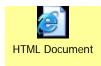
Instructions for

use

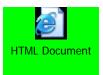
ISO norm : Final Draft ISO/CD 18857-2 "Water quality – Determination of selected alkylphenols, alkylphenol ethoxylates and bisphenol A-Method for non filtered samples using solidphase extraction and gas chromatography with mass selective detection - to be ready soon!

W

Microsoft Word Document


SPE Application Examples – Pesticides

Pesticide class	ED Chemicals in the Group
Carbamates	Aldicarb, Carbaryl, Methomyl, Baygon (propoxur), Bendiocarb, Oxamyl
Organochlorines	Aldrin, Chlordane, Endosulfan, Endrin, Nonachlor, Oxychlordane
Linuron, diuron, and derivatives/metabolites	Ethylene Thiourea (ETU), Linuron (Lorox) Diflubenzuron, Diuron
Organophosphates	Malathion, Ethylmalathion, Methylmalathion, Chlorpyrifos, Acephate, Chlorfenvinphos, Diazinon, Dichlorvos, Dimethoate, Fenthion, Glufosinate, Mevinphos, Parathion, Phosphamidon, Quinalphos,
Triazines and triazoles	Amitrol, Atrazine, Biteranol, Cyanazine, Simazine, Terbutryn, Triadimefon, Triadimenol, Triazines

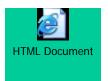


SPE Application Examples – Pesticides

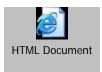
EXTRACTION OF EPA METHOD 8081A OR 8082 ANALYTES ORGANOCHLORINE PESTICIDES OR POLYCHLORINATED BIPHENYLS USING H2O-PHOBIC DVB EXTRACTION DISK (GC-ECD)

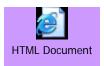
EXTRACTION OF ORGANOCHLORINE PESTICIDES, HERBICIDES, AND ORGANOHALIDES FROM DRINKING WATER EPA METHOD 508.1 (*Speedisk* C₁₈ High Capacity Extraction Disk, GC-ECD)

EXTRACTION OF PESTICIDES FROM WATER USING SDB-1 or Speedisk® H₂O-Phobic DVB Column (HPLC)



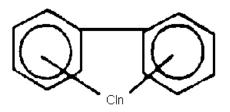
EXTRACTION OF PESTICIDES FROM WATER USING C₁₈ POLAR PLUS[®] (GC or HPLC)

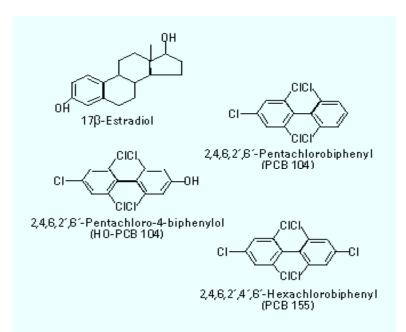

SPE Application Examples – Pesticides


EXTRACTION OF CARBAMATES FROM WATER USING SDB-1 OR *Speedisk*® H₂O-Phobic DVB Column (HPLC)

EXTRACTION OF TRIAZINE HERBICIDES FROM SOIL (SIMAZINE, ATRAZINE, PROPAZINE) – (Aromatic Sulfonic acid SPE, HPLC)

EXTRACTION OF TRIAZINES AND URONES FROM WATER USING C18 POLAR PLUS[®] (HPLC)


EXTRACTION OF TRIAZINES FROM WATER USING C18 POLAR PLUS[®] (HPLC)

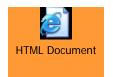


PolyChlorinated Biphenyl's - PCBs

- Class of organic compounds characterized by two benzene rings linked by a C-C bond

- Very resistant to degradation (oxidation, acids, bases, themperature)

- Soluble in most of the common organic solvents, slightly soluble in water

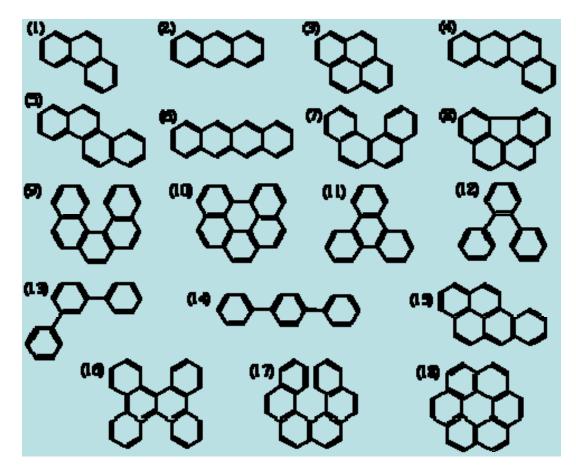

-Used as cooling/isolation fluids and fire retardants

- Accumulated - high stability under environmental conditions

SPE Application Notes Examples – PCBs

EXTRACTION OF POLYCHLORINATED BIPHENYLS (PCBs) FROM WATER– *Speedisk* C₁₈ (GC/MS determination)

EXTRACTION OF POLYCHLORINATED BIPHENYLS (PCBs) FROM WASTEWATER EPA Method 1668– *Speedisk* C₁₈ (GC/MS determination)


EXTRACTION OF PCBs FROM TRANSFORMER OIL -

Florisil (GC/MS determination)

Polycyclic Aromatic Hydrocarbon's - PAHs

- (1) Phenanthrene
- (2) Anthracene
- (3) Pyrene
- (4) Benz[a]anthrecene
- (5) Chrysene
- (6) Naphthacene
- (7) Benzo[c]phenanthrene
- (8) Benzo[ghi]fluoranthene
- (9) Dibenzo[c,g]phenanthrene
- (10) Benzo[ghi]perylene
- (11) Triphenylene
- (12) o-Tephenyl
- (13) Benzo[a]pyrene
- (14) p-Tephenyl
- (15) Benzo[a]pyrene
- (16) Tetrabenzonaphthalene
- (17) Phenanthro[3,4-c]phenanthrene
- (18) Coronene

Polycyclic Aromatic Hydrocarbon's – PAHs

- Solution Large and heterogeneous group of organic contaminants
- ♦ Formed and emitted as a result of the combustion of organic material
- Solution Lipophilic compounds (high affinity for organic matter)
- Solution by Differ substantially in their physicochemical properties
- Solution Physico-chemical properties largely determine the environmental behavior

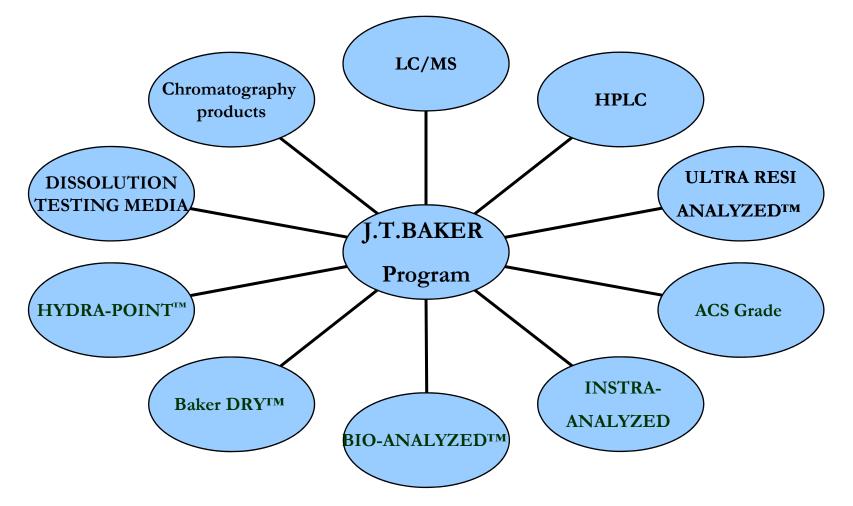
SPE Application Notes Examples – PAHs

EXTRACTION OF POLYCYCLIC AROMATIC HYDROCARBONS (PAHs) FROM WATER – *Speedisk* C18 (GC/MS determination)

EXTRACTION OF POLYCYCLIC AROMATIC HYDROCARBONS (PAHs) FROM WATER - *Speedisk* C₁₈ High Capacity (GC/MS determination)

EXTRACTION OF POLYCYCLIC AROMATIC HYDROCARBONS (PAHs) FROM DRINKING WATER EPA Method 550.1 – *Speedisk* C₁₈ High Capacity (HPLC-UV/FLU determination)

Application Examples – Environmental


SORBENT	APPLICATION
C18	PAH's, Phthalates, Organochlorine pesticides, PCB's etc.
C18 XF	Extra filter for dirty samples
C18 Polar Plus	Phenols, Chlorophenoxy acids, Urones etc.
C8	Diquat, Paraquat
SAX	Haloacetic acids, Dalapon
H ₂ O Phobic-DVB (HC)	Chrorinated Acids,
H ₂ O Philic-DVB	Carbamates, Pharmaceutical residues from water
Oil & Grease	EPA 1664, Rev.A

XF= Extra filter HC= High Capacity

J.T.Baker Analytical BU program

QUESTIONS?

