Practical Aspects of Sediments and Their Treatment - an Example

Dipl.-Ing. Sven Schäfer

Novi Sad September 2008

Contents

- Short history of sediments
- Contaminants in Hamburg
- Options and techniques
- Example
- Conclusion

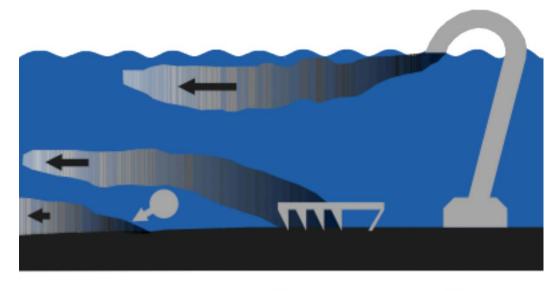
Short history of Sediments

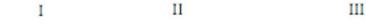
- Sediments have been regarded a valuable source for men (agriculture, dikes, dike foreland) and nature until the 20th century.
- Floods (Odra, Elbe, Rhine) revealed a wide spectrum of problems with contaminated sediments.
- Sediments are disqualified from source to hazardous waste.

Contaminants

- In Hamburg harbour
 - Metals (Copper, Cadmium, Lead, Zink, Arsenic,...)
 - TBT
 - PAH
 - Hexachlorobenzol
 - Chloropestizides
 - Estrogenes ?
- Contaminants can be remobilised and harm the aquatic environment

Remedial options


- 1. No action, which is only appropriately applied of if is determined that sediments pose no risk,
- Monitored natural recovery, based on the assumption that, while sediments pose some risk, it is low enough that natural processes can reduce risk over time in a reasonably safe manner,
- 3. In-situ containment, in which sediment contaminants are in some manner isolated from target organisms, though the sediments are left in place,
- 4. In-situ treatment, and
- 5. Dredging or excavation (followed by ex situ treatment, disposal and/or reuse).


Remediationtechniques for sediments

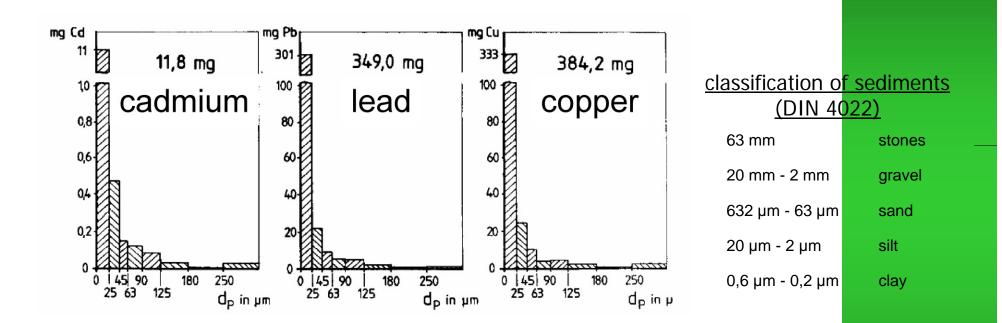
.

• • • • • • • • • • • • • • • • • • • •		
	in place	excavated
containment	in-situ-capping	confined aquatic disposal/capping
	contain/fill	land disposal
		beneficial use
treatment	bioremediation	physical separati <mark>on</mark>
	immobilisation	chemical extraction
	chemical treatment	biological treatm <mark>ent</mark>
		immobilisation
		thermal treatment

How to remove Sediments - conventional relocation of harbour sediments I

- 1. water injection
- 2. agitation (mud harrow)
- 3. side casting

Relocation of sediments, no removal!

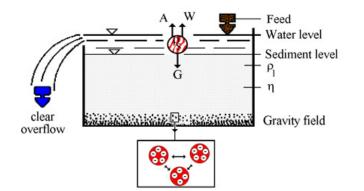

How to remove Sediments - conventional relocation of harbour sediments II

- Other conventional techniques:
 - Bucket excavator
 - Shovel excavator
 - Suction excavator
- Removal of sediments, external storage possible
- Storage on fields
 - treatment of sediments from fields ?
 - treatment of excess water from fields ?

How to treat removed Sediments

- large scale:
 - e.g. mechanical separation
 - Iow costs per unit of residue
 - Iow sensitivity to variations
 - can be applied to mobile plants
- small scale:
 - decontamination, e.g. biological treatment, acid leaching, solvent extraction
 - higher costs per unit of residue
 - specific experience needed
 - usually stationary

Particle size dependent contamination



contaminants predominantly in middle silt fraction ($d_p < 20 \ \mu m$) sand ($d_p > 63 \ \mu m$) minor contaminations

mechanical separation (particle size) reasonable

Sedimentation and Filtration < 0.1 mm

Sedimentation

Stokes's Law:

$$v_{s} = \frac{d^{2}(\rho_{s} - \rho_{l})g}{18\eta} \qquad \begin{array}{l} d = 1 \,\mu m \rightarrow v_{s} = 1 \,m \,/ \,\text{montr}\\ d = 0,1 \,\mu m \rightarrow v_{s} = 1 \,m \,/ \,a \end{array}$$

 $\mathbf{v}_s = \text{velocity of sedimentation} \\ \mathbf{d} = \text{diameter of particle} \\ \phi = \text{density } \mathbf{g} = \text{gravity } \eta = \text{viscosity}$

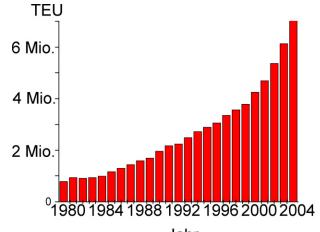
 v_s decreases with increasing Re and with equal polarities of particles

Karman and Kozeny:

Filtration:

Nanoskale-particles problematic

$$\alpha_H = 5 \cdot \frac{(1-\varepsilon)^2}{\varepsilon^3} \cdot \frac{36}{d^2}$$


$$v_F = \frac{\Delta P \cdot r^2}{8 \cdot \eta_{Fl} \cdot z}$$

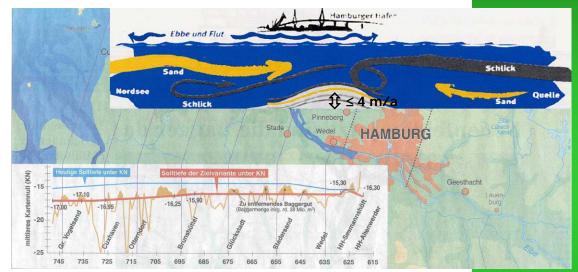
 $\alpha_{\rm H}$ = resistancy of filtration d = diameter

 v_F = velocity of filtration ΔP = difference of pressure r = pore-diametre η_{FI} = viscosity of liquid z = length of pore

Example Hamburg Harbour

	2004
Rotterdam	8,2 Mio TEU
Hamburg	7,0 Mio TEU
Antwerpen	6,0 Mio TEU

Jahr



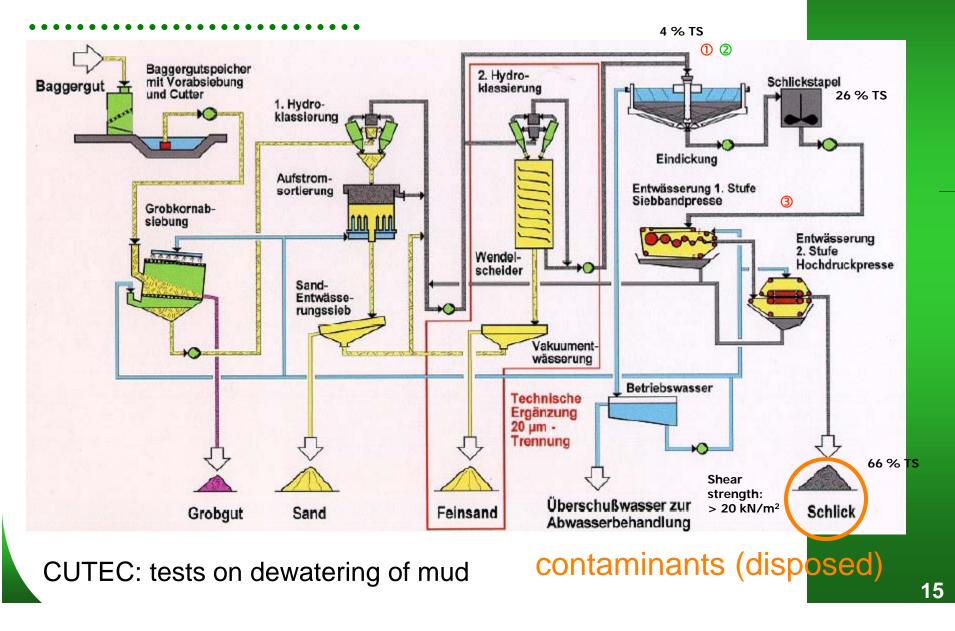
TEU: Twenty-Feet Equivalent Unit (Standard-Container) L 6,1 m; B 2,5 m; H 2,6 m

Keeping free the waterway and the Elbe

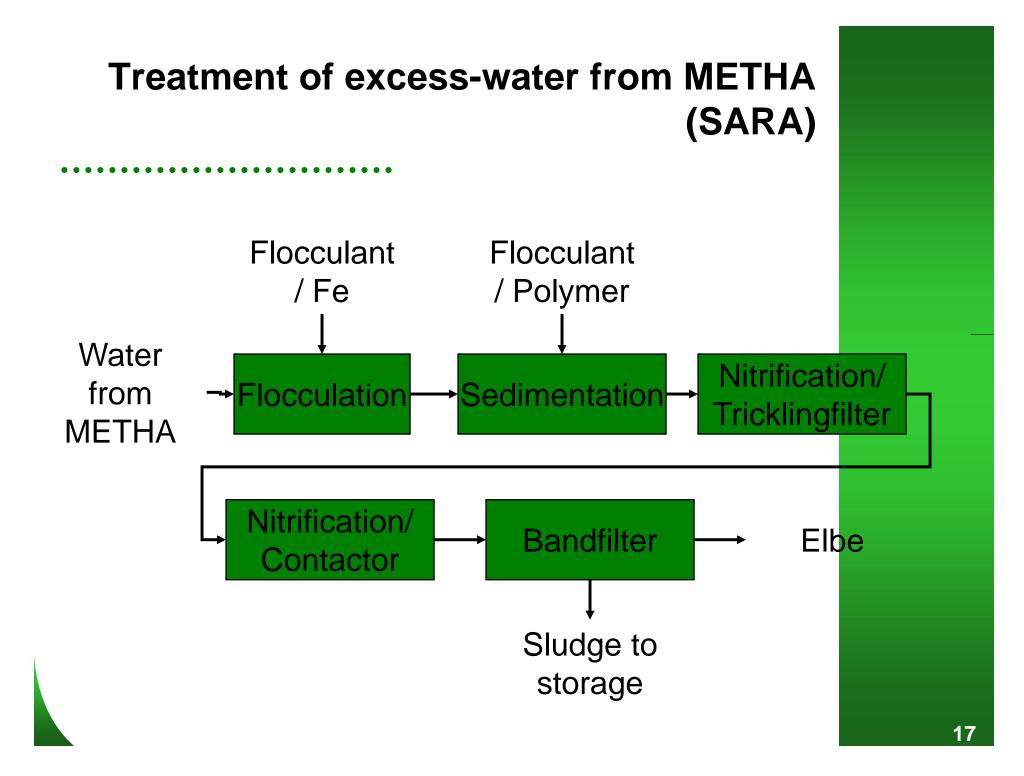
Hamburg Harbour lower Elbe:

Depth of waterway: 13,80 m (independent of tidal: 12,50 m)

8,1 Mio m³/a dredged material, with 5,35 Mio m³/a silt and fine-sand sediment


- 4,25 Mio m³/a with low contaminations \Rightarrow relocation/dumping/harrowing in the current
- 1,1 Mio m³/a contaminated \Rightarrow disposal

METHA III


- \bullet Since 1993 separation of dredged material in low contaminated sand (> 63 μm) and contaminated mud
- Production of 400 000 t/a dewatered mud
- Invest: approx. 68,5 Mio €
- Annual costs: approx 5,5 Mio € (approx 1,3 Mio € for flocculants)

Principle of sediment dewatering (METHA III)

What about sand, mud and water?

- gravel:
 - usage as usual
- sand:
 - usage as usual
- mud:
 - usable (and used as sealing (e.g. landfill) if contamination OK in sealing concept
 - disposal
 - remediation
 - incineration if organics (humic substances) in good concentration
- water from fields:
 - biological treatment
 - lagoons

Conclusion

- Treatment of sediments are state-of-the-art
 In-situ
 - Ex-situ
- Mechanical classification of sediments are reasonable
 - Large-scale classification into contaminated fraction and noncontaminated fraction
 - Smaller scale treatment of contaminated fraction reasonable
- Treated sediments can have a benefit